
An Analysis of Home IoT Network Traffic and
Behaviour

Yousef Amar
Queen Mary University of London

y.amar@qmul.ac.uk

Hamed Haddadi
Imperial College London
h.haddadi@imperial.ac.uk

Richard Mortier
Cambridge University Computer Lab

richard.mortier@cl.cam.ac.uk

Anthony Brown
University of Nottingham

anthony.brown@nottingham.ac.uk

James Colley
University of Nottingham

james.colley@nottingham.ac.uk

Andy Crabtree
University of Nottingham

andy.crabtree@nottingham.ac.uk

Abstract—Internet-connected devices are increasingly present
in our homes, and privacy breaches, data thefts, and security
threats are becoming commonplace. In order to avoid these, we
must first understand the behaviour of these devices.

In this work, we analyse network traces from a testbed of com-
mon IoT devices, and describe general methods for fingerprinting
their behavior. We then use the information and insights derived
from this data to assess where privacy and security risks manifest
themselves, as well as how device behavior affects bandwidth.
We demonstrate simple measures that circumvent attempts at
securing devices and protecting privacy.

Index Terms—Computer Networks, Internet of Things, Per-
sonal Data

I. INTRODUCTION

There is an increasing presence of internet-connected de-
vices in our homes, and yet we see an alarming rise in data
thefts, security threats, and privacy breaches through these
unregulated, uncertified, and often insecure devices.

With the recent discovery of the KRACK replay attack on
devices using WPA2 [1], the risks of unsecured communica-
tion within a network have once again surfaced to the public
eye.

Similarly, with standards slow to catch up, manufacturers
of networked devices have been making assumptions about
the protocols they use, relying on undocumented behaviour.
Standards to combat these issues do exist. For example,
HTTP/2 requires encryption by default, blacklists insecure
cipher suites, and is still faster than HTTP/1.1. Yet manu-
facturers are slow to adopt it and rely on legacy hardware and
software.

TLS 1.3 uses ephemeral keys, making it more difficult for
an attacker to decrypt traffic. This has seen pushback [2] as
some heavily regulated enterprises (e.g. banking) rely on using
static keys to decrypt and monitor internal traffic to meet both
security and visibility requirements. This emergent use case
could not have been predicted and solutions that will satisfy
contexts with different concerns — such as home vs enterprise
— are therefore slow to be established.

Along the same lines, some imminent standards, such as
DNS Over HTTPS (DOH), seek to solve many privacy issues
and prevent service providers from discriminating between

different kinds of traffic. This would mitigate DNS-based
internet filtering by ISPs/governments, as well as greatly
enhance user privacy.

There are many potential measures that can be taken to
mitigate the issues we discuss in this paper, however they have
only very recently begun to be explored [3].

From an IoT perspective, in order to understand how to
contain these devices, we need to first understand their be-
haviour in-the-wild and in realistic deployment scenarios. In
order to secure the home of the future, it is critical to be able to
automate the process of fingerprinting their network behaviour
such that threats across arbitrary devices can be identified and
mitigated.

We aim to understand the overall IO behaviour of devices in
an average IoT-enabled house. Our intention is to understand
the protocols used, data volumes, types, data rate and trans-
mission frequency, etc. Our data should enable us to assess
the potential costs of these devices in terms of bandwidth and
their privacy and security threats.

Doing so will allow us to develop systems that maximise
privacy and minimise leakage by default, and providing an
interface for users to be able to understand, monitor, and
control the flow of personal data in their homes [4].

We demonstrate simple yet significant measures to circum-
vent attempts at securing devices and protecting privacy, such
as using passively observed API keys to hijack control of smart
light bulbs, or tracking Apple devices despite MAC address
randomization.

II. SET-UP AND DATASET

A. Devices

Figure 1 provides an overview of the IoT devices in our
home testbed. The devices we used are as follows.

1 Foobot Air Quality Monitor
2 Netatmo weather station and environmental sensors
3 Amazon Echo
4 Apple iPhone 5 running iOS 11
5 Apple iPad pro 10.5” with cellular and WiFi connectivity
6 Apple Macbook Pro 13” with touch bar

ar
X

iv
:1

80
3.

05
36

8v
1

 [
cs

.N
I]

 1
4

M
ar

 2
01

8

Fig. 1. An Overview of the Home IoT Testbed

7 Samsung SmartThings Hub with a presence sensor
8 Neato Botvac vacuum cleaner
9 2x TP-Link smart plugs

10 Philips Hue Bridge
11 Apple TV
12 Ubiquiti Access Point
13 DLink Switch
14 TP Link MR6400

These include a variety of general-purpose home hubs (3 ,
7), as well as device-specific hubs (10 , 11) that are one step

away from the devices they actually control, such as several
Hue LED bulbs.

We also have a number of consumer electronics connected
(4 , 5 , 6), while our two smart plugs (9) can accommodate
any additional offline devices. Finally, we have IoT devices
that connect directly to the router (1 , 8 , 2).

B. Set-up

This section describes how we set up our home IoT testbed.
Our measurements and analysis is conducted on network traffic
while all devices are idle. We connect an L2 switch to a 4G
router running NAT, DHCP, and DNS forwarding to Google’s
DNS. An access point is connected to this switch to which all
but two of the IoT devices are connected. These two have a
wired connections directly to the from two of our IoT devices.

We capture all traffic by mirroring all ports to one connected
to a Linux box with two NICs. Traffic is captured via one NIC

with TCP/UDP disabled through tcpdump and stored on disk.
Traces are then retrieved separately through SSH via a second
NIC connected to the internet. All data must pass through the
switch (both internal and external) and thus all packets are
mirrored on the switch port to the Linux box and therefore all
packets are captured.

C. Data and Analysis

We continuously captured packets for 22 days before per-
forming our first analysis of this data. We wrote a set of
scripts to perform our analysis, and are making these scripts
publicly available [5]. To analyze network behavior on a per-
device basis, we split the combined trace by MAC address. We
also used DNS and DHCP logs to help find hostnames that
correspond to MAC addresses by looking at mappings of IP
to MAC address and IP to hostname over time. This is useful
especially for devices that randomize their MAC addresses,
such as the iPad.

For all other statistics, we fed the traces through the Bro
Network Security Monitor [6] and ran custom as well as
existing scripts on Bro logs.

III. OBSERVATIONS

A. Device Setup and Interaction

The devices were set up using the manufacturers apps and
set up with Apple HomeKit where possible. If a device could

work with Alexa then it was configured to do so (Foobot,
Neato Botvac, Philips Hue, and TP-Link plugs).

When setting up devices, it is not uncommon to go through
a Bluetooth-like pairing flow (e.g. Apple TV). Some devices
require WPS-like physical interaction through a button press
(e.g. Philips Hue Bridge), however we show that this can be
circumvented. Previous work has shown that the secure setup,
pairing, and configuration of devices can be done securely
in way that does not impact user experience negatively, so
arguments for compromising security in favor of usability are
weak [7].

Some devices, such as the Hue Bridge or the Neato Botvac
communicate via plain HTTP with other devices and the
outside world. This interaction can be monitored, device
behaviour inferred, and in the case of the Hue Bridge, API
keys can be extracted and the device hijacked.

B. Learning from Traffic

1) Identifying Devices: While for most devices, the first
three MAC address bytes are enough to identify a vendor,
and thus make a reasonable assumption as to what the device
could be, there are many other methods that we explored in
part during this experiment that can be used in conjunction.

For example, the Foobot’s MAC address points to “Shanghai
High-Flying Electronics Technology Co., Ltd” a WiFi module
manufacturer. This tells us very little about what the device
could be, but if we look at the DNS requests it makes, most of
which are A record queries for api.foobot.io, we can build a
behavioural profile for this device, and use it to identify others
like it.

Similarly, consumer Apple devices can randomise MAC
addresses to curb tracking, yet there are ways to track these
devices regardless or even reveal their true MAC address [8].
We were able to track an iPad connecting to our network by
combining DHCP and DNS logs to ascribe the iPad’s local
hostname to all eight of the MAC addresses it used.

2) Monitoring Devices: While encrypting web traffic pro-
tects a user’s data to some extent, there are still other risks that
are not always obvious. For example, using a proxy will not
always curb DNS leaks unless configured for remote DNS. A
lot of information can be gleaned from DNS traffic, though
fortunately efforts to protect this information (mainly from
ISPs) are increasing. Recent commits to Android indicate
that Google plans adding DNS over TLS to the ubiquitous
operating system [9].

The main issue however is that some devices still use plain
HTTP for some or all of their communication (figure 2). Any
device on the network can passively observe metadata and
control requests coming from these devices next to the usual
unencrypted browsing done by mobile devices. This can be
a significant privacy risk, even for seemingly innocuous data,
such as light bulb states. Inferences such as presence in rooms
or homes can be made just by inspecting the responses to state
requests, e.g. in this case, the periodic requests by the Amazon
Echo to the Hue Bridge. Other information such as who was

the last to control the lights and when can also be extracted
from these requests.

3) Controlling Devices: Some devices have rudimentary
security, such as the Hue Bridge, which requires a physical
button press to register a new device. However, when keys
and credentials are transmitted over plain HTTP, as they are
in the case of the Hue Bridge, any device in the home network
can sniff these, making the bridge susceptible to replay attacks
and the keys can be hijacked to make other API calls.

We tested this by extracting the iPhones API key from our
network trace, and making API calls to query state and control
lights from a separate laptop with a different MAC address.
The requests remained valid even after several weeks during
which the bridge was unplugged. This indicates that the key is
persistent, has no short timeout, and not bound to any device
by IP or MAC address.

While a malicious or compromised device, or an intruder
in the network, might necessarily have any reason to control
someone’s lights, devices that emit more sensitive data, or
control more critical systems, can be affected by similar
vulnerabilities,

Attack surface is of course not limited to WiFi. It has
been shown in the past that a Samsung Smart Things can be
compromised through Zigbee [10] for example. As we only
captured network traffic, this is outside the scope of this paper.

C. Global Statistics

An initial analysis of our network trace showed that the
largest source of data by IP in bytes is an Apple server
(25.8%), and correspondingly the top largest sink is the Apple
TV (41.9%). These two IPs account for 27.1% and 43.9%
of our routers sources and destinations by bytes respectively.
This is singlehandedly caused by a large software update, that
equally had a significant effect on skewing global port statistics
towards HTTP and HTTPS. By volume, just under half of
traffic was as a result of this alone.

Figure 2 shows the bytes transmitted by device (taken from
the IP total length header field) split by protocol (left) and
service (right). Figure 3 shows the sum of payload bytes
for each connection sent by originator and responder split
by internal and external communication, the vast majority of
which is external.

This information was extracted from Bro connection logs
where each connection has an originator and a responder.
Figure 2 only shows just the number of bytes an originator
sent. Our TP Link MR6400 router accounts for virtually all
bytes responded at 4.02 GB in total, 1.99 of which is HTTP,
1.85 SSL, 0.09 DNS, a major part of which can be attributed
to the Apple TV update. The router was left out of figure 2
as it dwarfs the remaining devices being responsible for the
most originating bytes at 778.73 MB.

This is especially visible in the inset plot in figure 4 where
the Apple TV update created large spikes at 1 . When these
are filtered out, we are left with figure 4 proper where most
spikes are as a result of iPhone 3 and iPad 4 browsing. The

Fig. 2. Bytes transmitted per device split by protocol and service

0 M

200 M

400 M

600 M

800 M

2x
 T

P
 L

in
k

H
S

11
0

A
m

az
on

 E
ch

o
A

pp
le

 T
V

B
ro

ad
ca

st
D

Li
nk

 S
w

itc
h

F
oo

bo
t

H
ue

 B
rid

ge
iP

ho
ne

 5
s

Ja
m

es
' i

P
ad

M
ul

tic
as

t
N

ea
to

 R
ob

ot
 V

ac
S

m
ar

tT
hi

ng
s

H
ub

U
bi

qu
iti

 A
cc

es
s

P
oi

nt
W

IN
C

−
70

−
21

Device

Tr
af

fic
 (

by
te

s)

type
external
internal

Fig. 3. Internal vs external traffic; internal traffic separated for visibility

initial spikes at the start of the trace 2 are caused by traffic
during configuration and is discussed in the next section.

D. Statistics by Device

Router: Other than the Apple TV update and some MQTT
pings, virtually all traffic originating at the router were
from SSDP packets. We can tell this alone by destination,
which was the SSDP multicast address. The Search Target
headers contain device and service schemas that are typi-
cal of routers, for example, InternetGatewayDevice, WAN-
Device, WANCommonInterfaceConfig, WANConnectionDe-
vice, WANIPConnection, WFADevice, WFAWLANConfig,
and Layer3Forwarding. However no devices request UPnP
descriptions from the URLs in the location headers.

Hue Bridge: The Hue Bridge’s behaviour is particularly
interesting, as the vast majority of its traffic is consistent
DNS and SSDP, after a brief burst in the beginning dur-
ing configuration. This is primarily (787552 requests) to
www.ecdinterface.philips.com, however it does not attempt to
connect to this host.

The Hue Bridge transmits bursts of just over 2 KB of basic
device SSDP traffic every 52 seconds, however, unlike the
router, its UPnP description is queried by the Amazon Echo.
The Echo gets standard metadata from this description, and
at thrice the frequency, the Echo calls Hue API endpoints to
get the lights’ state, including on/off state, colour information,
and other metadata. The Echo is the only device that makes
API calls to the Hue bulbs, aside from the iPhone during
configuration.

Apple TV: Apple TV network activity can for the most part
be attributed to the aforementioned automatic software update.
Automatic updates can be disabled but are enabled by default.
The unencrypted portion of this traffic are primarily spikes
while requesting image and video thumbnails from Akamai
Technology CDN servers.

These include film cover art and app icons, so viewing
habits and installed apps can be inferred indirectly by ex-
amining the frequency certain thumbnails are downloaded.
There exists therefore the potential for embarrassment on, for
instance, cultural or religious grounds.

When looking at purely the number of connections by
port, DNS has the highest at 4480 followed by SSL at
4434, and multicast DNS at 3580. From the DNS re-
quests, we can see that the most frequent is a local Home-
Kit hostname, followed by Apple’s Bonjour Sleep Proxy
(common across any Apple device), and a number of Ap-
ple application and time servers (time-ios.g.aaplimg.com,
time-ios.apple.com, itunes.apple.com, init.itunes.apple.com,
xp.apple.com, play.itunes.apple.com, etc). There are no other
discernible patterns.

Amazon Echo: Aside from the traffic corresponding to Hue
Bridge API and UPnP requests previously discussed, all HTTP
traffic is encrypted. The Echo communicates with several
Amazon servers. The DNS logs hint on the Echo’s behaviour,
with 4392 requests for device-metrics-us.amazon.com, 1210
for dcape-na.amazon.com, 538 for pindorama-eu.amazon.com,

and 46 for softwareupdates.amazon.com, among several
others. Interestingly, there were also 490 requests for
www.meethue.com; the model URL listed in the Hue Bridge’s
UPnP description.

The vast majority of DNS requests were very unusual –
69192 for www.example.com, 69120 for www.example.net,
and 69086 for www.example.org. Other users have observed
this, however we can only speculate what the point of these
requests are, since the Echo’s interaction with these hosts is
limited to the TCP three-way handshake.

By number of connections, 29796 NTP connections follow
DNS, with the most at 44973, followed by HTTP at 22090
connections. There were also 6778 ICMP connections made
from port 8 on the Echo to port 0 on the router.

Neato Botvac: In figure 2, this device’s total transmitted
bytes are relatively small since it was turned off between 2017-
09-22 01:20 and 2017-10-04 15:50. The vast majority of traffic
is TCP; a baseline of SSL traffic with mostly TCP Keep-Alive
packets. It communicates mainly with two AWS servers in the
cloud. Browsing to these shows that these are Neato’s RESTful
API servers; “Nucleo” servers with version 1.11.1 of a “Neato
Robotics Message Bus.”. Other than that, there is minor NTP
traffic.

iPhone: Besides using device apps for configuration and
setup at the start, subsequent iPhone traffic is characteristic
of normal browsing behavior. There are random spikes of
HTTP/SSL traffic to email, social media, and news web-
sites, as well as the common Apple servers (akamaitech-
nologies.com CDN, etc). Some requests are to Amazon, at-
tributable to Alexa.

Macbook Pro: This was the first device that had Dropbox
traffic. It was only really active during the first two hours
of capture for configuration, and had barely any traffic at
all after that, except short periods of primarily SSL, some
HTTP traffic. Coupled with DNS requests to e.g. Facebook
and Google servers, this is indicative of light browsing.

Some of the HTTP traffic was requesting generate_204
characteristic of network portal detection for logging in to
WiFi, otherwise JSON headline dumps from news websites
and some images.

Here too we have the usual Apple traffic, including sleep
proxy and HomeKit, as well as Hue Bulbs interaction.
The Macbook also had some encrypted communication to
a second Netatmo server (b90.netatmo.net as opposed to
b91.netatmo.net).

IV. CONCLUSIONS AND ONGOING WORK

In this work, we analyse network traces from a testbed
of common IoT devices, and describe general methods for
fingerprinting their behaviour. We then use the information and
insights derived from this data to assess where these privacy
and security risks manifest themselves, as well as how device
behaviour affects bandwidth and power consumption.

We published scripts to simplify doing this form of network
trace analysis and identified several areas of contention when
it comes to privacy such as Philips Hue Bridge security holes

Fig. 4. Hourly aggregates of frame lengths over time with spikes from Apple TV 1 , iPhone 3 , iPad 4 , and mixed configuration 2

Fig. 5. Hourly aggregates of frame lengths over time excluding Apple TV, iPhone, and iPad

and simple circumvention of MAC address randomization.
The main takeaway from this work is to begin to provide an
awareness on the behavior of common home IoT devices to
mitigate privacy risks.

Our initial analysis was on a simple case where all IoT
devices are in their idle state. We plan to repeat this analysis
for several additional scenarios and under different conditions.

Through observing behavior when users directly interact
with these devices at home and remotely (e.g. through an
app) we seek to ultimately draw inferences from the traffic,
such as discerning human activity and evaluating the privacy
risk of being able to do so. Similarly, we plan to lay the

groundwork for identifying important considerations when
building integrated IoT/home hub systems from a network
security perspective.

V. ACKNOWLEDGEMENTS

This work is funded in part by the grant EP/M001636/.

REFERENCES

[1] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce
reuse in wpa2,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1313–1328.

[2] K. Paterson, “Industry Concerns about TLS 1.3,” https://www.ietf.org/
mail-archive/web/tls/current/msg21278.html, 2016, [Online; accessed
24-February-2018].

https://www.ietf.org/mail-archive/web/tls/current/msg21278.html
https://www.ietf.org/mail-archive/web/tls/current/msg21278.html

[3] M. Nottingham, “Internet protocols are changing,” https://blog.apnic.net/
2017/12/12/internet-protocols-changing/, 2017, [Online; accessed 24-
February-2018].

[4] H. Haddadi, A. Chaudhry, J. Crowcroft, H. Howard, D. McAuley,
A. Madhavapeddy, and R. Mortier, “Personal data: Thinking inside
the box,” in Proc. 5th Decennial ACM Aarhus Conference: Critical
Alternatives, Aarhus, Denmark, Aug. 17–21 2015.

[5] Y. Amar, “Trace Analysis Scripts,” https://github.com/yousefamar/
trace-analysis-scripts, 2018, [Online; accessed 24-February-2018].

[6] T. B. Project, “The Bro Network Security Monitor,” https://www.bro.
org/, 2014, [Online; accessed 24-February-2018].

[7] A. Brown, R. Mortier, and T. Rodden, “Multinet: reducing interaction
overhead in domestic wireless networks,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2013,
pp. 1569–1578.

[8] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,
“Why mac address randomization is not enough: An analysis of wi-fi
network discovery mechanisms,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. ACM,
2016, pp. 413–424.

[9] A. Conway, “Android getting ”DNS over TLS” support to stop ISPs
from knowing what websites you visit,” https://www.xda-developers.
com/android-dns-over-tls-website-privacy/, 2017, [Online; accessed 24-
February-2018].

[10] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 636–654.

https://blog.apnic.net/2017/12/12/internet-protocols-changing/
https://blog.apnic.net/2017/12/12/internet-protocols-changing/
https://github.com/yousefamar/trace-analysis-scripts
https://github.com/yousefamar/trace-analysis-scripts
https://www.bro.org/
https://www.bro.org/
https://www.xda-developers.com/android-dns-over-tls-website-privacy/
https://www.xda-developers.com/android-dns-over-tls-website-privacy/

	I Introduction
	II Set-up and Dataset
	II-A Devices
	II-B Set-up
	II-C Data and Analysis

	III Observations
	III-A Device Setup and Interaction
	III-B Learning from Traffic
	III-B1 Identifying Devices
	III-B2 Monitoring Devices
	III-B3 Controlling Devices

	III-C Global Statistics
	III-D Statistics by Device

	IV Conclusions and Ongoing Work
	V Acknowledgements
	References

