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ABSTRACT
Occupancy modelling for efficient energy management of indoor
spaces has gained significant recent attention. Unfortunately, many
such models rely on copying sensor data to the cloud for third-party
services to process, creating risks of privacy breach. Such matters
have become particularly pertinent for companies handling data
of EU citizens due to provisions of the General Data Protection
Regulation (GDPR). In this paper we present an implementation of
“Occupancy-as-a-Service” (OaaS) at the edge, inverting the usual
model: rather than ship data to the cloud to be processed, we retain
data where it is generated and compute on it locally. This effec-
tively avoids many risks associated with moving personal data to
the cloud, and increases the agency of data subjects in managing
their personal data. We describe the Databox architecture, its core
components, and the OaaS functionality. As well as improving the
privacy of the occupants, our approach allows us to offer occupancy
data to other applications running on Databox, at a granularity that
is not constrained by network usage, storage or processing restric-
tions imposed by third-party services, but is under data subject
control.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Domain-
specific security and privacy architectures; • Computer systems
organization→ Sensors and actuators;
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1 INTRODUCTION
Accurate occupancy estimation is important for occupancy based
energy-efficient control systems such as control of indoor lighting
and energy-saving automatic HVAC. Providing accurate occupancy
sensing and estimation requires fine-grained time-series data from
ambient sensors such as cameras and motion detectors. If this data
were exposed to other parties, a considerable amount of private
information would be leaked, e.g., occupants’ sleeping habits, social
interactions, and activity patterns. Using Databox, we implement
a privacy-enhanced occupancy information service that provides
accurate occupancy estimation without exposing fine-grained time-
series data – only the computed occupancy estimation is revealed.
Potential benefits of our approach include:

• Improving space utilisation of offices and classrooms by
employees and students.

• Improving targeting of advertisements, insurance, security
and other services to occupants in hotels/dormitories.

• Improving detection of depression and other diseases based
on individual activity patterns.

• Improving energy-efficiency of home automation systems
such as HVAC control.

The essence of our approach is to avoid a number of risks and
threats by simply not sending raw sensor data to remote cloud-
hosted services for processing. Instead, we process data on a set-top
box-like device local to the building, and allow other applications
to extract only the processed estimation of occupancy according to
the data subjects’ (i.e., users) preferences. We next discuss related
work that has considered the privacy/utility trade-off in sensor
data (§2) before describing the architecture of our Databox (§3) and
OaaS (§4), presenting an early evaluation (§5), and concluding (§6).

2 RELATEDWORK
Sensor data is core to many IoT applications but is known to leak
private information [9, 12, 13, 19]. A range of sensors exist which
are capable of supporting occupancy prediction [1, 6, 11]. For ex-
ample, CO2 measurements are useful for occupancy detection and
estimation [7]; fine-grained electric meter data with sampling ev-
ery 10 seconds leaks more accurate occupants information than
sampling every 30 seconds or 1 minute [19]. This work compares
CHMM, CRF, HM-SVM, Rule-based for PIR and NaiveBayes, Ran-
dom Forest, Decision Tree, Multilayer Perceptron, and k-Nearest
Neighbor for Smart meter data.

Ang et al [2] attempted to compute the number of people in
the room via training the different classifiers on the data extracted

https://doi.org/10.1145/3277893.3277894
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Figure 1: Databox architecture.

from ambient sensors. They used ambient sensors instead of camera
sensors for occupancy detection in order to preserve the privacy of
people. They estimated the number of people in the room as a linear
function of time, humidity, CO2, sound rate and illumination. Their
results have shown that CO2 rate, illumination level and sound
rate are the most dominants sensors for recognising indoor human
occupancy.

Although a threat-model has been proposed [14] it makes as-
sumptions that a single sensor per room is used and that the attacker
has access to the database with the goal being to derive information
about the occupants at the target location.

IoT applications typically do not provide metrics related to pri-
vacy risk associated with sensor data generated by users. To address
this, Singh et al proposed a system which allows an application
to tradeoff its functionalities and privacy risks as instructed by
the user [18]. However, there are many applications where finding
this tradeoff conflicts with providing the required functionalities
expected by the user. For example, introducing noise in occupancy
data to prevent privacy disclosure degrades the efficiency and use-
fulness of the data [10].

Zhao et al [21] presented a fog computing solution, where compu-
tation is performed at the edge of the network, to detect occupancy
and human activity using low-cost motion sensing and wireless net-
working devices. To make use of the occupancy data generated by
this solution by other applications running in the cloud, a complete
privacy preserving solution is required.

Similarly, edge computing enabling smart cameras with built-in
face and object recognition capabilities filter unwanted events data
locally to reduce the network traffic.1,2

We are concerned with the scenario where the system preserves
privacy by supporting computation across the raw, fine-grained
data locally, only disclosing the results of this processing which will
typically have reduced associated risks [5, 15, 16]. This provides
utility for applications consuming occupancy data while reducing
privacy risks.

3 DATABOX
Databox, depicted in Figure 1, is a device designed to collect and
mediate access to personal data. We envisage it being instantiated
in the form-factor of a set-top box or similar; we prototype it using
a Raspberry Pi 3 Model B+. All components are encapsulated as
Docker containers.3 It hosts third-party computations in the form
of Apps, while external devices such as sensors interface to the
Databox via Drivers responsible for interacting with the external
device through reads and writes to an associated Store, a light-
weight time-series database. For example, a Driver might collect
data from a CO2 sensor and write those data into its associated
Store.

Data is isolated within Databox as each Driver may only write
to its own Store, and Apps must request permission on installation
to be able to access a Store. If the user grants permission, the App
receives a set of access tokens (formatted as Macaroons [3]) which
it can subsequently present to the Store for verification that the
requested access is permitted by the user. Data may only be com-
municated to a third-party service through a managed component,
the Export Driver subject to the user granting that permission when
installing the App. All communication between components takes
place between containers using a CoAP-inspired protocol [4] imple-
mented over ZeroMQ.4 Data can be shared between a Driver and
a App through the database component within a Store or can be
relayed through a Store using our middleware layer, Zest. Figure 2
illustrates the latter where a Driver capturing images is able to
send them to an App for facial recognition and receive back the
results using Zest’s notification system. In summary, this sequence
involves:

(1) App observes requests on Store endpoint /notification/ request/
image_capture/*

(2) Driver POSTs image to Store endpoint /notification/request/
image_capture/001

(3) App carries out image processing and POSTs result to Store
endpoint /notification/ response/ image_capture/001

(4) Driver receives notification containing processed image

The Store acts as a broker between Driver and App to facili-
tate the communication. This takes place over well defined end-
points on the Store which means both Driver and App can be
controlled through access tokens and have no direct way of com-
municating with one another. The ability to mediate access between
Apps/Drivers within Databox using Macaroons is a novel feature
within our architecture.

Available Stores are registered on installation in a HyperCat cat-
alogue, through which they can later be discovered by other Apps.5
Each store provides a RESTful API supporting JSON, text and binary
data. Underlying storage is implemented using the Irmin [8] system
using a git-structured backend. This supports a key design goal of
Databox, to provide accountability of data stored and accessed via
the commit history of the git-based storage system which provides

1https://www.silklabs.com/
2https://vivacitylabs.com/
3https://docker.com/
4http:// zeromq.org/
5https://hypercat.io
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Figure 2: Asynchronous communication betweenDriver and
App.

a detailed account of all mutations to data. Stores can also be repli-
cated and reconciled using git’s clone, branch and merge operations.
To supplement this information we also use our middleware to
publish audit information in real-time to any App permitted to
receive it.

Building a times series database on top of a version control
system introduces performance complexities. Figure 3 describes
the architecture we use to deal with the performance implications
of writing frequent amounts of sensor data to a Git. We achieve
this by implementing in-memory buffering of incoming messages.
Each queue represents an individual data source (sensor) and can be
used to serve the most recent read requests directly from memory
without disk access. The queue is also used to buffer up writes
into chunks that form shards on disk reducing the frequency of
commits to Git. A time-oriented index is maintained for each shard.
The index is also stored to disk. The in-memory queue has two
tunable properties. One represents the maximum size of the queue
and the other represents the number of items of the queue to shard
when the maximum queue size is reached. Setting these properties
depends on the write frequency of the data source (sensor) which is
described in the HyperCat. Section 5 provides performance metrics
for computation required by OaaS.

4 OCCUPANCY-AS-A-SERVICE
Inside Databox, we implement Occupancy-as-a-Service (OaaS) as a
Databox application which provides occupancy data as a service
to other applications (e.g., overcrowd and secure entry) running in
Databox as illustrated in figures 4 and 5.

The current version of OaaS makes use of three sensors – camera,
motion-sensor, and CO2 sensors. An App will typically go through
the following processing tasks:

(1) Capture an image from the IP camera every unit time speci-
fied by the Databox owner or on demand – when motion-
sensor detects some human motion.

(2) Detect if there is a face in the frame.
(3) Verify the face in the camera and save the outcome in the

App’s Store.

(4) CaptureCO2 data fromCO2 sensor periodically and calculate
occupancy prediction using pre-trained learning model.

(5) Provide occupancy data in a range of formats for other apps
to use, e.g., a simple occupancy visualisation app might dis-
play the known, unknown, and total faces detected in the
house in the last week using standard time-series functions
(last, since, range) to query historical occupancy data.

To enable event driven processing, OaaS uses Databox’s middle-
ware observe and notification functionalities to get data from the
motion-sensor local Store. OaaS requests to observe an endpoint
on the motion-sensor local Store and gets a notification every time
data is updated.

Use Cases
overcrowd is an application that sends out a notification if the total
number of people in an indoor monitored space for a certain period
of time exceeds a threshold. For example, a landlord could limit the
total number of tenants that are allowed in rented accommodation,
both for security and insurance purposes. This App requests access
to following OaaS API’s:

(1) Latest occupancy count as per calculated by Oaas per unit
interval: /ts/oaas/occupancy_count/ latest

(2) All occupancy counts since <timestamp>: /ts/oaas/occupancy_
count/ since/<timestamp>

(3) All occupancy counts between two intervals: /ts/ oaas/occupancy_
count/ range/<start>/<end>

secure entry is another application which notifies when an un-
known person (intruder) enters the monitored place. secure entry
requires a camera and motion-sensor. When motion is detected, it
triggers the camera to take pictures and if it detects any unknown
faces [17, 20], it sends a notification to an external URL. secure entry
as a stand-alone App could leak privacy information of known peo-
ple and their movement activity in the house if motion-sensor data
and camera images are sent to the cloud for processing. Databox
through OaaS restricts the secure entry App to access data from its
own Store components and preserves privacy by providing only
intruder entry event information. OaaS gets camera and motion-
sensor data and stores processed information to its own Store, and
secure entry App must request permission on installation to be able
to access the OaaS Store:

(1) The secure entry App requests to observe the OaaS Store
endpoint /notification/ request/ intruder_detected/*

(2) OaaS POSTs image of the intruder with time-stamp to its
Store endpoint /notification/ request/ intruder_detected/001

(3) The secure entry App carries out local processing and POSTs
result to its Store endpoint /notification/ response/ intruder_detected/
001

(4) The secure entry App’s associated Driver receives notifica-
tion containing processed image and exports results to an
external URL.

In this way, the secure entry App exports only intruder data
and preserves other occupants privacy.

/ts/oaas/occupancy_count/latest
/ts/oaas/occupancy_count/since/<timestamp>
/ts/oaas/occupancy_count/since/<timestamp>
/ts/oaas/occupancy_count/range/<start>/<end>
/ts/oaas/occupancy_count/range/<start>/<end>
/notification/request/intruder_detected/*
/notification/request/intruder_detected/001
/notification/response/intruder_detected/001
/notification/response/intruder_detected/001
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5 EVALUATION
Our preliminary evaluation focuses on the processing requirements
of the OaaS App as well as examining the low-level requirements
for supporting high-frequency read and writes from our time-series
database.

Figures 6a and 6b summarise the processing time and memory
overheads associated with each stage of scene detection, face detec-
tion and face verification when the OaaS App is run on a Raspberry
Pi 3, with comparison against a MacBook Pro. As might be expected,
compute intensive activities such as face recognition require signifi-
cant processing time on the Pi. Nonetheless, the results are provided
in a sufficiently timely fashion to be useful, and asynchronous user
interface techniques can be used to alleviate perceived delay.

Figures 7a and 7b show how our storage implementation per-
forms on a Raspberry Pi 3 when reading and writing time-series

Capture 
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Extract features 
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Occupancy 
as a Service
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Energy 
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Prediction 
 Driver
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Occupancy 
Monitoring
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Figure 5: Occupancy-as-a-Service on Databox, providing ac-
curate and privacy-filtered occupancy data via the OaaS API
to other Databox-hosted applications.

data. Each test involves container-to-container communication in-
stigated by a driver writing to a Store, and an App reading from a
Store. This end-to-end test thus involves communication across our
middleware layer. A write test involves writing a single data point
(value) to storage 10,000 times, while a read test involves a time-
series query for the last 100 values repeated 1000 times. The results
show encouraging performance for both memory consumption and
CPU utilisation across both tests. Further work will examine this
performance against other well known time series implementations
suitable for our target hardware.
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Figure 6: Resource consumption of the OaaS App.
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Figure 7: Store performance.

6 CONCLUSIONS
In this paper we have presented Occupancy-as-a Service (OaaS)
implemented as an app on Databox, an edge computing solution
supporting movement of data processing code to data, avoiding ex-
posure of data to third-party and the associated potential for breach
of privacy. To achieve this, Databox isolates data and computation
within containers, mediating access to data using tokens known
as Macaroons. In addition, Databox supports data provenance and
audit of data access through a storage solution built on top of the
git version control system.

Supporting such features and computing at the edge introduces
challenges such as utilising the limited processing capabilities of the
hardware available. We presented brief evaluation of performance
of our OaaS App within a Databox environment on a Raspberry Pi 3.
Our initial findings indicate encouraging performance at both App
and System (Store) levels.We believe these results show it is possible

to implement applications such as occupancy modelling using edge-
computing to provide greater privacy for users and without the
network usage, storage or processing restrictions typically imposed
by traditional cloud-hosted solutions.
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